Online
Classroom

Hadoop for Developers

Part of our "Data Sciences & ML" courses

3 days


Course Overview

This Apache Hadoop course that we are presenting, and very much looking forward to, will give participants an in-depth look at fundamental concepts and processes that are integral to getting Apache Hadoop working efficiently and solidly for businesses of all sizes.

Course Prerequisites

Outline

Understanding Bigdata & Hadoop

  • Introduction to Big Data & Big Data Challenges
  • Limitations & Solutions of Big Data Architecture
  • Hadoop & its Features
  • Hadoop Ecosystem
  • Hadoop 2.x Core Components
  • Hadoop Storage: HDFS (Hadoop Distributed File System)
  • Hadoop Processing: MapReduce Framework
  • Different Hadoop Distributions

Hadoop Architecture & HDFS

  • Hadoop 2.x Cluster Architecture
  • Federation and High Availability Architecture
  • Typical Production Hadoop Cluster
  • Hadoop Cluster Modes
  • Common Hadoop Shell Commands
  • Hadoop 2.x Configuration Files
  • Single Node Cluster & Multi-Node Cluster set up
  • Basic Hadoop Administration

Hadoop MapReduce Framework

  • Traditional way vs. MapReduce way
  • Why MapReduce
  • YARN Components
  • YARN Architecture
  • YARN MapReduce Application Execution Flow
  • YARN Workflow
  • Anatomy of MapReduce Program
  • Input Splits, Relation between Input Splits and HDFS Blocks
  • MapReduce: Combiner & Partitioner
  • Demo of Health Care Dataset
  • Demo of Weather Dataset

Advanced Hadoop MapReduce

  • Counters
  • Distributed Cache
  • MRunit
  • Reduce Join
  • Custom Input Format
  • Sequence Input Format
  • XML file Parsing using MapReduce

Apache Pig

  • Introduction to Apache Pig
  • MapReduce vs. Pig
  • Pig Components & Pig Execution
  • Pig Data Types & Data Models in Pig
  • Pig Latin Programs
  • Shell and Utility Commands
  • Pig UDF & Pig Streaming
  • Testing Pig scripts with Punit
  • Aviation use-case in PIG
  • Pig Demo of Healthcare Dataset

Apache Hive

  • Introduction to Apache Hive
  • Hive vs Pig
  • Hive Architecture and Components
  • Hive Metastore
  • Limitations of Hive
  • Comparison with Traditional Database
  • Hive Data Types and Data Models
  • Hive Partition
  • Hive Bucketing
  • Hive Tables (Managed Tables and External Tables)
  • Importing Data
  • Querying Data & Managing Outputs
  • Hive Script & Hive UDF
  • Retail use case in Hive
  • Hive Demo on Healthcare Dataset

Advanced Apache Hive & HBase

  • Hive QL: Joining Tables, Dynamic Partitioning
  • Custom MapReduce Scripts
  • Hive Indexes and views
  • Hive Query Optimizers
  • Hive Thrift Server
  • Hive UDF
  • Apache HBase: Introduction to NoSQL Databases and HBase
  • HBase v/s RDBMS
  • HBase Components
  • HBase Architecture
  • HBase Run Modes
  • HBase Configuration
  • HBase Cluster Deployment

Advanced Apache Hbase

  • HBase Data Model
  • HBase Shell
  • HBase Client API
  • Hive Data Loading Techniques
  • Apache Zookeeper Introduction
  • ZooKeeper Data Model
  • Zookeeper Service
  • HBase Bulk Loading
  • Getting and Inserting Data
  • HBase Filters

Processing Distributed Data with Apache Spark

  • What is Spark
  • Spark Ecosystem
  • Spark Components
  • What is Scala
  • Why Scala
  • SparkContext
  • Spark RDD

Oozie & Hadoop Project

  • Oozie
  • Oozie Components
  • Oozie Workflow
  • Scheduling Jobs with Oozie Scheduler
  • Demo of Oozie Workflow
  • Oozie Coordinator
  • Oozie Commands
  • Oozie Web Console
  • Oozie for MapReduce
  • Combining flow of MapReduce Jobs
  • Hive in Oozie
  • Hadoop Project Demo
  • Hadoop Talend Integration

This Hadoop for Developers course looks very interesting, I do however have a question